If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+51x-518=0
a = 1; b = 51; c = -518;
Δ = b2-4ac
Δ = 512-4·1·(-518)
Δ = 4673
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-\sqrt{4673}}{2*1}=\frac{-51-\sqrt{4673}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+\sqrt{4673}}{2*1}=\frac{-51+\sqrt{4673}}{2} $
| x+4=1.30 | | 10=24x | | 3(5x-2)=9x-12 | | -69=11x-3 | | 7a+3=5a+7 | | 11=x/4+3 | | -2x^2+76x+1444=0 | | 14=2(2x-1)=16-(2x-8) | | 3u-7=-16 | | -8(u+4)=6u+24 | | 2+z-5=-z+3-4 | | b÷7+3=10 | | 2(x-1)=5(x+4)-4 | | (13x+7)+2(13x+7)-1=180 | | -17q=5(-q+12) | | -4(17w-20)=-4(12w+20)-20 | | -1+7(-g+13)=-2g | | (x*38)^2=3x^2 | | 12r=3(-10r+14) | | 2(d+3)=14 | | 5(-12+14y)=6(10y-5) | | -4(8j+20)-20=-12j+20+20 | | -19-7(-c+19)=-c | | 6y-1=4y+3 | | -14k=2(-6k-6) | | 3/4+5x/12=1/3 | | 11+16-17n=-8(2n-6)-5 | | 8n-14=90 | | 4(r+1)=8 | | 8x-18=-6x+10(5x+9) | | 5v+4=14 | | -18.2k+3.38=9.1+10.4k |